

NED University of Engineering and Technology

F/SOP/UAFA 01/02/00

Final Year Project Showcase Batch-2021 Year 2025

Department of Biomedical Engi		
Name of Programme:Biomedical Engineering		
Fabrication of Polymer Engineered Herbal Intervention	Biomaterial for Cardiovascular Graft	
Development of a cardiovascular grachitosan, and thyme extract to enh	nance biocompatibility,	
1 Project Idea mechanical strength, and antibact		
films were fabricated using solvent of	,	
physical, and biological properties. 'effective and herbal-engineered so		
interventions, especially in small-di		
reduce infection risk and improve he		
 	_	
The process involved the fabrication material using a novel blend of Poly		
	` ` '	
2 Process (CS), and thyme extract. This include herbal solutions, casting films with		
(1%, 2%, 3%), and characterizing the	• • •	
testing, pH, swelling/degradation, ar	· · · ·	
	-	
The outcome was the development cardiovascular grafts. CPT-1 showed		
3 Outcome 2 demonstrated balanced pH, while	•	
antibacterial activity. These confirm	_	
biocompatible vascular implantation	±	
This work integrates PVA (mechanical strength), chito		
(biocompatibility), and thyme (antib	<u> </u>	
4 Evidence (Theoretical activity) Theoretical basis includes		
Basis) literature supporting improved perfo		
confirmed through FTIR, SEM and		
Competitive Advantage or Unique Selling Proposition This pro	*	
	grafts by reducing infection, improving biocompatibility, and optimizing surface properties for endothelial growth. It aligns with SDG 3 (Good Health and Well-being), especially in	
infection-prone, low-resource settings. It opens niche markets	<u> </u>	
implants.		
a Cost reduction of existing This herbal-polymer cardiovascular	r graft is fabricated using	
Product relatively low-cost, accessible mater		
thyme extract, which are significant	· · · · · · · · · · · · · · · · · · ·	
commercial synthetic grafts made fr	• •	
ePTFE or Dacron. The process avoid		
fabrication techniques (e.g., electros		

NED University of Engineering and Technology

		stage), making it a cost-effective alternative , especially in regions with limited healthcare budgets.
b	Process Improvement which leads to superior product or cost reduction, efficiency improvement of the whole process (e.g. What is the issue is current process and what improvement you suggests)	Current synthetic grafts, especially for small-diameter vessels, suffer from thrombogenicity, poor endothelialization, and risk of infection. This project addresses these limitations by: Incorporating thyme extract with antibacterial and anti-inflammatory properties to reduce infection risks. Achieving optimal mechanical properties and surface hydrophilicity for better cell adhesion and compatibility. Enhancing biointegration through a simple solvent casting process that ensures structural uniformity and functional performance. This results in superior biocompatibility and antimicrobial
		performance , which improves the overall success rate of graft surgeries.
c	Attainment of any SDG (e.g. How it is achieved and why it is necessary for the region)	This project aligns strongly with SDG 3: Good Health and Wellbeing , by addressing a leading cause of mortality — cardiovascular diseases — with a safe , effective , and biocompatible vascular graft . It further supports SDG 9: Industry, Innovation and Infrastructure by introducing a novel product in the biomedical field with potential for commercial development, especially in developing regions like Pakistan.
d	Expanding of Market share (e.g. how it expand and what is the problem with the current market	 Patients in developing countries who require low-cost, infection-resistant grafts. Surgeons and hospitals looking for alternatives to synthetic grafts that fail in small-diameter applications. Biomedical startups aiming to launch herbal/biopolymer hybrid solutions
e	Capture new market (e.g. Niche market or unaddressed segment)	 The project caters to a new, emerging segment in biomedical devices: herbal-engineered implants. There is growing global interest in natural, plant-based solutions that promote healing with minimal side effects. This graft system leverages thyme extract's antibacterial and anti-inflammatory properties to offer an innovative product in the cardiovascular graft market. It addresses gaps in the market for: Patients allergic or resistant to conventional antibiotics.

NED University of Engineering and Technology

		 Rural hospitals and low-resource settings where infection control is critical. Consumers and institutions favoring herbal-based therapeutic technologies.
f	Any Environmental Aspect (e.g. carbon reduction, energy-efficient, etc.)	This graft uses biodegradable, eco-friendly materials (chitosan from shellfish waste, herbal thyme extract, water-based processing) and avoids hazardous chemicals, aligning with environmentally conscious healthcare manufacturing. Also, the solvent casting method used in this project is low-energy compared to high-tech alternatives like electrospinning, reducing carbon and energy footprints of production. Thus, the project encourages a greener, sustainable medical innovation pathway.
g	Any Other Aspect	Customizability: The concentration of thyme extract can be tailored (1%, 2%, 3%) depending on the clinical requirement — either prioritizing biocompatibility, pH neutrality, or antimicrobial strength. Educational & Research Value: This project lays the foundation for future exploration into plant-based bioengineering and has potential extensions into wound healing, tissue scaffolding, and drug delivery.
		Scalability & Localization: The use of locally available thyme and minimal-lab equipment ensures that the project is scalable in low-income countries, promoting self-reliant healthcare innovation.
6	Target Market (Industries, Groups, Individuals, Families, Students, etc) Please provide some detail about the end-user of the product, process, or service	Target users include hospitals, cardiovascular surgeons, biomedical device manufacturers, and patients needing bypass grafts. It is particularly useful in low-income regions needing cost-effective, infection-resistant implant materials.
7	Team Members (Names & Roll No.)	Ramsha Khan_BM-21051, Hafsa Ali_BM-21059, Ifra Amir_BM-21060, Hafsa Fatima_BM-21084
8	Supervisor Name	Dr. Madeeha Sadia madeehaoz@cloud.neduet.edu.pk